Roll No.		
----------	--	--

Total No. of Questions: 11]

Time: 3 Hours

[Total No. of Printed Pages: 7

JSB-1037

B.C.A. (IInd Semester) Examination, June-2025 MATHEMATICS FOR COMPUTER SCIENCE

Paper - BCA 4.5 DCCT-24

[Maximum Marks : 120 · 陈松林 (二年) (19 中) K花 像 Section-A (Marks : $2 \times 10 = 20$) Answer all ten questions. Questions (i) to (v) are multiple choice questions, Note :while questions (vi) to (x) are fill in the blank questions. Each question carries 2 marks. श्री जैल (धी सी) हा ने व जीवसके (खण्ड-अ) (अंक : $2 \times 10 = 20$) सभी दस प्रश्नों के उत्तर दीजिए। प्रश्न संख्या (i) से (v) बहुविकल्पीय प्रश्न एवं प्रश्न संख्या नोट :-

(vi) से (x) रिक्त स्थान भरने वाले प्रश्न हैं। प्रत्येक प्रश्न 2 अंक का है।

Section-B $(Marks: 8 \times 5 = 40)$

Note:-Answer all *five* questions. Each question has internal choice (Answer limit 150 words). Each question carries 8 marks.

> (खण्ड-ब) (अंक : $8 \times 5 = 40$)

सभी पाँच प्रश्नों के उत्तर दीजिए। प्रत्येक प्रश्न में विकल्प का चयन कीजिए (उत्तर-सीमा नोट :-150 शब्द)। प्रत्येक प्रश्न 8 अंक का है।

BR-478

ISB-1037 P.T.O. Section-C

 $(Marks: 20 \times 3 = 60)$

Note:— Answer any three questions out of five (Answer limit 400 words). Each question carries 20 marks.

(खण्ड–स)

(अंक : $20 \times 3 = 60$)

नोट:- पाँच में से किन्हीं तीन प्रश्नों के उत्तर दीजिए (उत्तर-सीमा 400 शब्द)। प्रत्येक प्रश्न 20 अंक का है।

Section-A

- 1. (i) A matrix with same number of columns and rows is called:
 - (a) Square matrix
 - (b) Row matrix
 - (c) Column matrix
 - (d) Null matrix
 - (ii) A statement in propositional logic that is always true is called :
 - (a) Contradiction
 - (b) Tautology
 - (c) Contingency
 - (d) Proposition

(iii)	The	principle of mathematical induction is mainly used to prove :			
	(a)	Equations involving variables			
	(b)	Results true for infinitely many natural numbers			
	(c)	Identities between two variables			
	(d)	Solution of differential equations			
(iv)	The power set of set A is defined as :				
	(a)	The set of all elements of A			
	(b)	The set of all proper subsets of A			
	(c)	The set of all supersets of A			
	(d)	The set of all subsets of A			
(v)	(v) A relation that is reflexive, symmetric and transitive is called :				
	(a)	Partial order			
	(b)	Function			
	(c)	Equivalence relation			
	(d)	Identity relation			

- (vii) A statement that is sometimes true and sometimes false is called a
- (viii) The statement $a \equiv b \pmod{n}$ means that n divides
- (ix) The number of proper subsets of a set with 4 elements is
- (x) The probability of an impossible event is

Section-B

Unit-I

2. Find the eigenvalues of following matrix:

$$\mathbf{A} = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}$$

Or

Find the product of following matrices:

$$X = \begin{bmatrix} 1 & 2 \\ 3 & 5 \end{bmatrix}$$

$$B = \begin{bmatrix} 2 & 1 & 2 & 3 \\ 0 & 0 & -2 & 8 \end{bmatrix}$$

Unit-II

3 Explain the concept of conditional and biconditional statements using their truth tables.

Or

Using suitable example, explain the concept of types of quantifiers.

Unit-III

4. Using mathematical induction, prove the following:

$$1 + 3 + 5 + \dots + (2n - 1) = n^2$$
 for $n \ge 1$

Or

Using mathematical induction, prove the following:

$$n! \geq 2^{n-1} \ \forall \ n \geq 1.$$

Unit-IV

5. If $A = \{1, 2, 3, 4\}$ and $B = \{3, 4, 5, 6\}$, find $A \cup B$ and $A \cap B$.

Or

If $A = \{x : x \text{ is a vowel in the English alphabet}\}$ and $B = \{a, e, i\}$, find A - B.

5

6. A fair dice is rolled once. What is the probability of getting a number greater than 4?

Or

A card is drawn at random from a standard deck of 52 cards. Find the probability that it is a king, given that the card drawn is a face card.

Section-C

7. Find the adjoint and inverse of following matrix:

$$A = \begin{bmatrix} 3 & 2 \\ 1 & 4 \end{bmatrix}$$

8. Let P be "The system is stable" and Q be "The feedback is negative". Express the following statement in a symbolic logic:

"If the feedback is not negative, then the system is not stable. However, if the system is stable, then the feedback must be negative."

Is this compound statement logically equivalent to $(P \Leftrightarrow Q)$? Briefly justify your answer.

9. Prove by mathematical induction for $n \ge 1$:

$$n^3 + (n + 1)^3 + (n + 2)^3$$
 is divisible by 9.

- In a class of 40 students 22 play hockey, 26 play basketball and 14 play both hockey and basketball.
 - (a) How many students play either hockey or basketball?
 - (b) How many students do not play either of the games?
- 11. A bag contains 3 red balls and 2 green balls. One ball is drawn at random and it is red. What is the probability that it came from a bag which originally has 4 red balls and 3 green balls, given there are two bags?